
  

 

Abstract—A multivariate analysis method, orthogonal 

partial least squares to latent structures (OPLS), was used to 

discriminate Alzheimer’s disease (AD), early and late mild 

cognitive impairment (EMCI and LMCI) from cognitively 

normal control (CN) using MRI and PET measures. FreeSurfer 

5.1 generated 271 MRI features including 49 subcortical 

volumes, 68 cortical volumes, 68 cortical thicknesses, 70 surface 

areas and 16 hippocampus subfields. Subjects with all 

aforementioned MRI measures passing quality control and 

valid Fludeoxyglucose (18F) (FDG) and Florbetapir (18F) PET 

scans were selected from ADNI database, resulting in a total of 

524 participants (137 CN, 214 EMCI, 103 LMCI and 70 AD) 

for the study. Altogether 286 features including 15 significant 

PET uptake features (7 for FDG and 8 for AV-45) were utilized 

for OPLS analysis. Predictive power was evaluated by   ( ), a 

quantifier of the statistical significance for class separation. The 

results show that MRI features (   ( )  =0.645), and PET 

features (  ( ) = 0.636) has comparable predictive power in 

separating AD from CN, and MRI features are better predictor 

of LMCI (   ( )  = 0.282) than PET (   ( )  = 0.294). 

Combination of PET and MRI has the most predictive power 

for LMCI and AD with   ( ) of 0.294 and 0.721, respectively. 

While for EMCI, cortical thickness was found to be the best 

predictor with a   ( ) of 0.108, suggesting cortical thickness 

may be the first structural change ahead of others and should 

be prioritized in prediction of very mild cognitive impairment. 

I. INTRODUCTION 

haracterized as a neurodegenerative disease, 

Alzheimer’s disease is thought to be the cause of the 

majority of dementia cases[1]. Early and reliable diagnosis of 

AD and its prodromal stages (i.e. mild cognitive impairment 

(MCI)) is seen as an essential step in search of prospective 

early intervention and treatments. Structural MRI capturing 

regional brain atrophy [2-4] and PET scan, such as 

Fludeoxyglucose (FDG) and Florbetapir (AV-45), 

characterizing amyloid deposition in brain [5] are the two 

most popular imaging biomarkers for early detection and 

diagnosis of AD.  

Orthogonal partial least square to latent structures (OPLS) 

is a supervised multivariate data analysis method that has 
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shown its efficiency in analyzing complex biological data [6-

9]. Westman et al. combined manual hippocampal volume 

measurements with automated regional and global volume 

measures to  discriminate AD and MCI from controls and 

compared their discriminative powers[8]. They also 

compared and combined MRI data from European 

ADDNeuroMed with ADNI using OPLS, and the results 

indicated that the two cohorts showed similar pattern of 

atrophy and predictive power (between 80 and 90%)[7]. 

In this study, we have used additional MRI measures (i.e. 

subcortical volume, cortical volume, cortical thickness, 

surface area and hippocampus subfield), and features 

extracted from FDG and AV-45 PET scans as inputs to 

OPLS. The aim was to find the individual and combined 

discriminative power of these features in separating EMCI, 

LMCI and AD from normal control (CN) and the best models 

for predicting each stage of disease. We also aimed to 

investigate efficiency of cross testing by performing cross-

model validation with an external dataset. 

II. MATERIALS AND METHODS 

A. Dataset 

The data used were downloaded from Alzheimer’s disease 

Neuroimaging Initiative (ADNI) database which is publicly 

accessible (https://ida.loni.usc.edu/login.jsp), and were used 

in this study for the goal of detecting AD at its earliest stage 

and identifying ways to track the disease through biomarkers 

including brain-imaging techniques, such as FDG and AV-45 

PET and structural MRI, among others.  

B. Inclusion and Diagnostic Criteria 

As this study aimed to find the discriminative power of 

MRI and PET, only subjects with all MRI measures passing 

quality control and valid FDG and AV-45PET scans at 

baseline were included. This has yielded a total of 524 

subjects qualified for this study (CN = 137, EMCI = 214, 

LMCI = 103 and AD = 70) as of February 2014 on ADNI 

website, as shown in Table I.  

Diagnostic criteria are as follow: Cognitively Normal 

Subjects (CN): MMSE scores between 24 and 30 (inclusive), 

a CDR of 0, non-depressed, non-MCI, and non-demented. 

EMCI: MMSE scores between 24 and 30 (inclusive), a 

subjective memory concern reported by subject, informant, or 

clinician, objective memory loss measured by education 

adjusted scores on delayed recall of one paragraph from 
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Wechsler Memory Scale Logical Memory II (WMSLM II)(

≥16 years: 9-11; 8-15 years: 5-9; 0-7 years: 3-6), a CDR of 

0.5, absence of significant levels of impairment in other 

cognitive domains, essentially preserved activities of daily 

living, and an absence of dementia. LMCI: Same as EMCI 

with a difference only in objective memory loss measured by 

education adjusted scores on delayed recall of one paragraph 

from WMSLM II(≥16 years: ≤8; 8-15 years: ≤4; 0-7 

years: ≤ 2). Mild AD: MMSE scores between 20-26 

(inclusive), a CDR of 0.5 or 1.0, and meets 

NINCDS/ADRDA criteria for probable AD.  

Data are represented as mean ± standard deviation where applicable. CN = cognitively normal, EMCI =  early mild cognitive impairment, LMCI =  late mild cognitive impairment, AD = Alzheimer’s 

disease, MMSE = Mini Mental State Examination, FDG = PET with [18F]-fluorodeoxyglucose (FDG), AV45 = PET with 18F-AV-45 (florbetapir) † ns = not significant. Fisher’s exact test was performed 

for AD vs. CN, LMCI vs. CN and EMCI vs. CN using the training set, and all the p values were larger than 0.05. *Student’s t-tests were performed for the possible factors between CN and AD in the 

training set and p-values were shown with those smaller than 0.05 deemed significant as bolded.  

C. MRI and PET 

MRI scans were acquired from a variety of 3T scanners 

with protocols individualized for each scanner, as defined at 

(http://adni.loni.usc.edu/methods/documents/mri-protocols/). 

All scans were reviewed for quality by quality control (QC) 

team at the Mayo Clinic. A detailed description of PET 

protocols and acquisition procedures can be found at 

(http://adni.loni.usc.edu/methods/pet-analysis/pre-processig). 

D. Image Analysis and Data Preprocessing 

FreeSurfer 5.1 was used to generate aforementioned 271 

MRI features defined by UCSFFSX51_DICT_02_04_14.csv 

on ADNI website (https://ida.loni.usc.edu/login.jsp) 

excluding 5th ventricle (due to missing values) and ICV. All 

MRIs passed QC for the 271 features. Averaged florbetapir 

uptakes of the cortical and reference regions and a florbetapir 

composite (SUVR) across the brain were the 8 features 

extracted from AV-45 PET as shown in Table II, which also 

showed the 7 features of FDG PET  including FDG uptakes 

in 5 previously identified regions of interests (ROI)[10] plus 

their sum and weighted average. Altogether this yielded a 

total of 286 features for analysis.  

TABLE II. VARIABLES OF PET FEATURES INCLUDED IN OPLS ANALYSIS 

FDG PET AV-45 PET 

Cingulum Post  Cerebellum GM 
Left Temporal Whole cerebellum 

Left Angular Brainstem 

Sum of FDG Frontal 
Right Temporal Cingulate 

Right Angular Parietal 

Weighted Average Temporal 
 Summary of SUVR 

GM = grey matter, SUVR = standardized uptake value ratio 

FDG = PET with [18F]-fluorodeoxyglucose (FDG), AV45 = PET with 18F-AV-45 (florbetapir) 

Since ICV and age were found to be significant factors as 

demonstrated in Table 1, all MRI measures but for ICV were 

adjusted for ICV and age as per Eq. 1 if p value of the linear 

regressions were less than 0.05. 

             (           )       (     )            (1) 

Where    is the adjusted measure,     is the unadjusted 

measure,       and    are the subject ICV and age (years), 

respectively;       and    are the corresponding means for 

all the control subjects. The gradients      and      were 

derived by a region specific linear regression against subject 

ICV and age of all the participants. As per Chiang et al.[11], 

the above regression also has the advantage that the 

regressing order doesn’t affect the results. And then all data 

was processed by mean centering and unit variance scaling. 

E. Multivariate Data Analysis 

The aforementioned 286 features were used as input to 

OPLS [6, 9], a supervised multivariate data analysis method 

comes with the software package SIMCA (Umetrics AB, 

Umea, Sweden). OPLS removes variation from descriptor 

variables that is not related to group separation and the 

information related to class separation is found in the 

predictive component[6]. There are 7 single models and 3 

hierarchical models that were created for AD vs. CN, LMCI 

vs. CN and EMCI vs. CN for separation purpose. Single 

models used one of the 5 groups of MRI measures (i.e. 

subcortical volumes, cortical volumes, cortical thickness 

average, surface area and hippocampus subfields) or one of 

the PET (AV-45 or FDG). Three hierarchical models 

included one with all 5 groups of MRI measures, one with 

two PET measures and one with all of them combined.  

The predictive power of OPLS model for separating two 

groups is found in   ( )  and is defined as follows: 

  ( )                    ⁄  

Where PRESS (predictive residual sum of squares) 

   (                  )
 , is the squared differences 

between observed and predicted Y-values, and             
represents the total variation of the Y variable (diagnosis) 

  TABLE I. CHARACTERISTICS OF PARTICPANTS 

 Training Set  Testing set   

 CN EMCI LMCI AD  CN EMCI LMCI  p-value* 

Number 70 70 70 70  67 144 33  - 

Gender (F/M) 33/37/ 29/41 33/37 31/39  38/29 69/75 16/17  ns† 

Age 73.6 ± 6.6 70.6 ± 6.8 71.2 ± 7.4 75.0 ± 7.9  73.6 ± 5.4 69.6 ± 7.0 70.9 ± 8.5  < 0.001 

Years of education 16.5 ± 2.4 15.5 ± 2.6 16.7 ± 2.7 15.9 ± 2.6  16.3 ± 2.6 16.3 ± 2.6 16.1 ± 2.8  0.192 

MMSE 29.2 ± 1.0 28.5 ±1.4 27.5 ± 1.8 22.8 ± 2.1  29.0 ± 1.3 28.4 ± 1.6 27.9 ± 1.9  < 0.001 

FDG 6.6 ± 0.5 6.4 ± 0.6 6.2 ± 0.8 5.3 ± 0.7  6.6 ± 0.6 6.5 ± 0.6 6.5 ± 0.6  < 0.001 

AV45 1.09 ± 0.19 1.17 ± 0.22 1.29 ± 0.23 1.41  ± 0.18  1.11 ± 0.17 1.16 ± 0.20 1.3 ± 0.24  < 0.001 
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after scaling and mean centering [12].   ( ) is the results of 

7-fold (by default) cross validation with some subjects kept 

out of the model development and prediction of the kept out 

observations by the developed model are compared with the 

actual classes. This procedure is repeated until every 

observation has been kept out once and only once. A model 

with a   ( ) value larger than 0.5 is regarded as good [12]. 

III. RESULTS 

A.  Predictive Power of OPLS Model  

The predicative power for the aforementioned models was 

summarized in Table III with the corresponding  ( ). The 

hierarchical models are italicized and highest   ( )  are 

bolded for predicting different stages of the disease. Table III 

showed that combining all MRI and PET features had the 

highest predictive power of LMCI and AD. While using 

cortical thickness alone yielded a higher   ( )  for EMCI 

than using any measures even when all features combined.  

Separating efficiency of the best models found could be 

better visualized with scatter plots as given in Fig. 1. Perfect 

separation of AD using all features was shown as Fig. 1A, 

with a high   ( )  of 0.721. Fig. 1B-1C showed high 

efficiency of separating LMCI and EMCI from CN as well. 

TABLE III. SUMMARY OF   ( ) FOR ALL MODELS  

Models EMCI* LMCI AD 

MRI 

Subcortical volume - 0.188 0.585 

Cortical volume - 0.257 0.528 

Cortical thickness 0.108 0.154 0.538 

Surface area - 0.040 0.202 

Hippocampal Subfields 0.029 0.277 0.547 

Combined - 0.282 0.645 

PET 

18F-AV-45 0.076 0.227 0.518 

FDG 0.038 0.055 0.512 

Combined 0.093 0.229 0.636 

MRI+PET 0.008 0.294 0.721 

 
 Figure 1. Scatter plots under best models as indicated in Table III for 

separation between (A) AD and CN. (B) LMCI and CN (C) EMCI and AD. 

B. Model Cross-Model Validation with External Set 

External testing set was used to validate the best models as 

indicated in Table III, which were also cross tested with best 

AD model to see how the AD model classify MCI subjects. 

Results were shown with scatter plots as Fig. 2A-2D. 

Generally, the EMCI and LMCI best model has a better 

sensitivity and accuracy in predicting EMCI and LMCI than 

using AD model, however best AD model exhibited higher 

specificity as the model classified almost all controls 

correctly. The results also showed that the best LMCI model 

was almost as efficient in classifying LMCI in the testing set 

as it did in the training set indicating high model efficiency. 

However, the same is not seen for EMCI.  

IV. DISCUSSION 

A. Model Efficiency with OPLS 

This study aimed to investigate the predictive power of 

MRI measures, AV-45 and FDG PET in discriminating AD, 

LMCI, and EMCI from control using OPLS as a multivariate 

analysis tool. Models using part or all of the features were 

created for EMCI, LMCI and AD. Cross-validated predictive 

power   ( ) was used to evaluate these models, which were 

also validated with external testing dataset. The results as 

shown in Table III indicated that models generally had much 

more predictive power of AD than LMCI and EMCI as 

expected. The best model for predicting stages of AD is 

deemed the one with highest   ( ) value. For AD and LMCI 

prediction, the best model was obtained by combining all 

MRI and PET features. The best model of EMCI was average 

cortical thickness with a   ( ) value of 0.108, which was 

even slightly higher than combinational power of the two 

PET scans. This was very interesting that inclusion of more 

features did not strengthen the predictive power. 

With European AddNeuroMed project data, Westman et 

al. [8] utilized automated regional volumes and manual 

outlining of hippocampus as inputs to OPLS and found a 

  ( )of 0.64 when discriminating AD from CN, which was 

consistent with the   ( ) of 0.645 achieved using MRI only 

in this study, though more features were being used in this 

study. We have also showed PET scans has comparable 

discriminating power with MRI (  ( ) = 0.636). Westman et 

al. also built a MCI model with the same features and 

obtained a   ( )of 0.22. Comparing with LMCI model using 

all MRI features in this study, the predictive power of our 

model (  ( ) = 0.282) is higher which could be due to the 

difference in diagnostic criteria between MCI in 

AddNeuroMed dataset and LMCI in ADNI, or perhaps due to 

the MRI features that were included in this study contributing 

more complementary information to the model. 

To the best of our best knowledge of the literature, we 

were the first to include the EMCI group into the OPLS 

model. Interestingly, cortical thickness was found to have the 

most discriminative power than all other MRI and PET 

features, even higher than when combining all of them. The 

same trend was not seen for LCMI and AD models, which 

showed that volumetric measures had more power. This 

could be due to more reliability of cortical thickness than 

cortical volumes and other MRI measures at the very early 
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stage of AD [13]. This is consistent with some researches in 

literature that cortical thickness is recommended for MCI 

prediction [14]. Also it could imply that cortical thinning is 

the very first anatomical change that occurs before any other 

volumetric change or effective response to PET scan, and as 

disease processes volumetric change starts to dominate. 

 
Figure 2. Scatter plots of model validation with external testing set. (A) 

Testing best EMCI model with external EMCI data. (B) Testing best AD 

model with external EMCI data. (C) Testing best LMCI model with 
external LMCI data. (D) Testing best AD model with external LMCI data. 

Since the discriminative power of the best EMCI model is 

still weak, it can be argued that this could be due to 

partitioning errors embedded in the cross validation process 

in that the data distribution may slightly favor cortical 

thickness than others as reflected in   ( ). However, since 

   ( ) of 0.108 is higher than the threshold for significance 

of an OPLS model (0.05) [8], the model is still considered 

significant and the results are considered reliable.  

B. Model and Cross-Model Validation 

External EMCI and LMCI dataset was used to validate 

previously found best models. Fig. 2A-2B showed that a 

model trained using EMCI did a better job in classifying 

EMCI yielding higher sensitivity and accuracy than using AD 

model. Fig. 2C-2D showed similar results for LMCI. From 

Fig. 2, it could be seen that AD model did classify most of 

the CN subjects correctly indicating higher specificity than 

EMCI and LMCI models. This was because AD-CN trained 

model was very robust to recognize its training groups as 

manifested by Fig. 1A with no misclassification, while 

EMCI-CN and LMCI-CN trained models were not that 

efficient in defining the separating boundary due to limited 

distinctive features existing.  

Validation results of best EMCI and LMCI models as 

shown in Fig. 2A and 2C, showed that LMCI model was 

more robust, as LMCI model classified the testing LMCI 

subjects as well as it did for the training set (see Fig. 1B) and 

EMCI showed poorer separation than it did for the training 

set (see Fig. 1C). However, EMCI model showed some 

degree of generalization as validated with external dataset 

shown in Fig. 2A, indicating structural change of brain 

(cortical thickness in particular) already showed up at this 

stage. Besides, combining two PET scans received a 

predictive power (  ( ) = 0.093) close to that of the cortical 

thickness indicating that amyloid deposition was also shown 

to accumulate at the EMCI stage. 
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